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Ghosting reduction in scene-based nonuniformity correction
of infrared image sequences
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Scene-based adaptive nonuniformity correction (NUC) is currently being applied to achieve higher perfor-
mance in infrared imaging systems. However, almost all scene-based NUC algorithms cause the production
of ghosting artifacts over output images. Based on constant-statistics theory, we propose a novel threshold
self-adaptive ghosting reduction algorithm to improve the space low-pass and temporal high-pass (SLP-
THP) NUC technique. The correction parameters of the previous frame are regarded as thresholds to
compute new correction parameters. Experimental results show that the proposed algorithm can obtain a
satisfactory performance in reducing unwanted ghosting artifacts.

OCIS codes: 040.3060, 100.2550, 100.2960, 100.2980.
doi: 10.3788/COL20100812.1113.

Infrared (IR) imaging systems have been widely used in
both military and civilian fields. However, fixed pattern
noise caused by nonuniform response of detectors is an
intrinsic shortcoming of IR imaging. Nonuniformity cor-
rection (NUC) techniques were developed to perform the
necessary calibration. Reference-based corrections us-
ing calibrated images on startup cannot solve the drift
in the parameters of the detectors over time. As a re-
sult, scene-based corrections[1−3] have been studied to
continuously correct IR nonuniformity without using ref-
erences and interrupting detections. However, ghosting
artifacts are major problems of scene-based NUC. The
best known NUC technique based on temporal high-pass
(THP) filters is highly dependent on object motion. If an
object in the image moves slowly or remains stationary
for a large number of iterations, it will cause the produc-
tion of ghosting artifacts over the output images.

To reduce the ghost effect, Harris et al. pro-
posed a simple de-ghosting module in constant-statistics
NUC[3], wherein the correction parameters will not be
updated until the changes of each pixel are greater
than the threshold. Aiming at the NUC based on neu-
ral network[4], Esteban et al. presented two different
adaptive learning rate strategies to reduce ghosting
artifacts[5]. Recently, Qian et al. proposed an interesting
space low-pass and THP (SLP-THP) NUC to eliminate
ghosting artifacts[6]. In the abovementioned NUC tech-
niques, a proper threshold is important to reduce ghost-
ing artifacts effectively, but choosing the proper thresh-
old is a very difficult task. The SLP-THP NUC was
taken into consideration because using high threshold will
not remove enough of the ghost artifacts, while using low
threshold will cause few images for the estimation of cor-
rection parameters.

Aiming at the threshold problem of SLP-THP NUC,
this letter proposes a novel threshold self-adaptive ghost-
ing reduction NUC based on constant-statistics theory[7].
We adjust the threshold in our algorithm by using the
correction parameters of the previous frame.

THP NUC is carried out by computing the difference
between the input image and the temporal low-pass filter

image, which can be expressed as

y(k) = x(k) − f(k), (1)

f(k) = x(k)/N + (1 − 1/N) × f(k − 1), (2)

where x(k) is the input image, y(k) is the output image,
f(k) is the average of x(k) in the time domain, and N is
the number of accumulable frames.

In THP NUC, correction parameters are estimated us-
ing the whole space frequency of the input image. In
view of the space characteristic of nonuniformity (which
mainly exists in high-space frequency of image, as shown
in Fig. 1), SLP-THP NUC divides the space frequency
of image into two parts: low-space frequency and high-
space frequency.

Assuming x = z + nu, x is the input image, z is the
original image, and nu is the nonuniformity. Hence, x, z,
and nu can be expressed as

x(k) = xlow(k) + xhigh(k), (3)

z(k) = zlow(k) + zhigh(k), (4)

Fig. 1. Different space frequency images. (a) Input image;
(b) low-space frequency; (c) high-space frequency.
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nu(k) = nulow(k) + nuhigh(k), (5)

where xlow and xhigh are the low-space frequency and
high-space frequency of x, respectively; zlow and zhigh

are the low-space frequency and high-space frequency of
z, respectively; nulow and nuhigh are the low-space fre-
quency and high-space frequency of nu; k is the frame
number. xhigh can be written as

xhigh(k) = zhigh(k) + nuhigh(k). (6)

Therefore, SLP-THP NUC can be written as

y(k) = x(k) − fhigh(k), (7)

fhigh(k) =

k∑
l=k−N+1

xhigh(l)

N
, (8)

xhigh(k) = x(k) − x(k) ∗ A, (9)

where A is the 15×15 average filter, and ∗ is the con-
volution operator. In Eq. (8), the computation needs
N frames memory space and cannot be applied in the
real-time system. Hence, fhigh(k) can be improved as

fhigh(k) = xhigh(k)/N + (1 − 1/N) × fhigh(k − 1). (10)

To further reduce ghosting artifacts, SLP-THP NUC
introduces a threshold to distinguish nonuniformity from
object edges. It can be expressed as

X
high(k) =

{
xhigh(k)
0

|xhigh(k)| < Th
|xhigh(k)| ≥ Th , (11)

where Xhigh(k) only contains nonuniformity, xhigh(k)
contains nonuniformity and object edges, and Th is the
threshold.

In Eq. (11), a proper threshold Th can effectively
reduce ghosting artifacts. Currently, it maintains fast
convergence. However, selecting the proper threshold
is difficult because of scene changes[8]. The constant-
statistics theory gives a good hypothesis to solve the
problem arising from fixed threshold by assuming that
the temporal mean and standard deviation of each pixel
are constant over time and space. Based on this theory,
correction parameters fhigh will become more accurate
over time, so we can use fhigh(k − 1) of previous frames
to decide whether the current pixel will be used to com-
pute fhigh(k). Hence, Xhigh(k) can be written as

X
high(k) =

{
xhigh(k) |xhigh(k)| < fhigh(k − 1) + a

0 |xhigh(k)| ≥ fhigh(k − 1) + a
.

(12)
For the kth image, the process of our algorithm can be

described as follows:

1) xhigh
i,j (k) = xi,j(k) − xi,j(k) ∗ A,

2) X
high
i,j (k) =

{
xhigh

i,j (k)
0

|xhigh
i,j (k)| < fhigh

i,j (k − 1) + a

|xhigh
i,j (k)| ≥ fhigh

i,j (k − 1) + a
,

3) fhigh
i,j (k) = X

high
i,j (k)/N + (1 − 1/N) × fhigh

i,j (k − 1),

4) yi,j(k) = xi,j(k) − fhigh
i,j (k),

where (i, j) is the space coordinate, and parameter a
used for increasing convergence speed is a constant.

To test the performance of algorithms, C(k) is defined
as

C(k) =

M∑
i=1

N∑
j=1

{
fi,j(k) − fi,j(R)

}
M × N

, (13)

where f(k) is the correction parameter of the kth image,
f(R) is the true correction parameters after R frames, M
is the number of rows, and N is the number of columns.
In this letter, we assume that R denotes the 500th frame
image. Figures 2(a) and (b) show the convergence speed
of different algorithms. The convergence speed of THP
NUC is shown in Fig. 2(a). In Fig. 2(b), the pane
curve denotes SLP-THP NUC without threshold, the
plus curve denotes our threshold self-adaptive NUC, the
circle curve denotes SLP-THP NUC with threshold 20,
and the asterisk curve denotes SLP-THP NUC with
threshold 10. As shown in Fig. 2, the precision of our
proposed algorithm is better than SLP-THP NUC over
time and space (after 400 frames). On the other hand,
the smaller the threshold, the slower the convergence
speed.

The kth correction parameters, fhigh(k), of different
algorithms are shown in Fig. 3, where k=60, 120,
and 180. The accumulable frame N=40. This figure
shows that fhigh(k) of THP NUC contains more

Fig. 2. Convergence speed of different algorithms. (a) THP
NUC; (b) other NUC algorithms.
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Fig. 3. Comparison of fhigh(k) of different algorithms.

fhigh
1 (k), fhigh

2 (k), fhigh
3 (k), fhigh

4 (k), and fhigh
5 (k) are the

correction parameters of THP NUC, SLP-THP NUC with-
out threshold, SLP-THP NUC with threshold 10, SLP-THP
NUC with threshold 20, and our proposed NUC, respectively.

scene elements than the others. When k=60 or 120, the
sequence of scene elements from more to less is fhigh

2 (k),
fhigh
4 (k), fhigh

5 (k), fhigh
3 (k). When k=180, fhigh

2 (180),
fhigh
3 (180), fhigh

4 (180), and fhigh
5 (180) have very few

scene elements.
Figure 4 shows the correction performance of different

algorithms, where k=80, except for Fig. 4(b). From
this figure, obvious ghosting artifacts after THP NUC,
such as the edge of house, are clearly seen. Compared
with THP NUC, SLP-THP NUC without threshold can
eliminate most of the ghosting artifacts. SLP-THP
NUC with threshold further reduce the rest of ghost-
ing artifacts, however, selecting the proper threshold
is difficult. As shown in Fig. 4(e), a higher thresh-
old is invalid to distinguish nonuniformity from ob-
ject edges, the effect of which is similar to SLP-THP
NUC without threshold. Figures 4(b) and (g) show
the correction performance of Harris’s constant-statistics
algorithm using 500 frames of images and 80 frames
of images, respectively. Performance results indicate
that correction parameters of this algorithm cannot be
precisely estimated using too few frames. Figure 4(h)

Fig. 4. Correction performance of different algorithms. (a)
Original noise image; (b) constant-statistics NUC using 500
frames of images; (c) THP NUC; (d) SLP-THP NUC without
threshold; (e) SLP-THP NUC with threshold 20; (f) SLP-
THP NUC with threshold 10; (g) constant-statistics NUC
using 80 frames of images; (h) our proposed NUC.

Table 1. MSE Comparison of Different NUC
Algorithms (Fig. 4)

Image (a) (c) (d) (e) (f) (g) (h)

MSE 5.34 40.92 10.43 4.04 3.37 48.81 2.52

shows our proposed de-ghosting NUC. The ghosting ar-
tifacts of the images are eliminated effectively because
the threshold is computed self-adaptively using the cor-
rection parameters fhigh of the previous frame.

To test the performance of different algorithms, mean
square error (MSE) is used as the metric, which is defined
as

MSEk = E[(yk − ytrue)
2]

where E[·] is the expected value operator, yk is the kth
corrected image, and ytrue is the image without nonuifor-
mity noise.

The original image sequences of real IR imaging system
cannot be obtained without nonuniformity noise. There-
fore, we regard the calibrated image Fig. 4(b) as the im-
age ytrue. The MSE comparison of different algorithms
is shown in Table 1, which indicates that our proposed
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NUC is better than the others.
In conclusion, a threshold self-adaptive de-ghosting

NUC is proposed based on constant-statistics theory.
The correction parameters of the previous frame are re-
garded as thresholds to compute current correction pa-
rameters. The proposed algorithm has been applied to
real IR image sequences. Experimental results show
that the process can reduce unwanted ghosting artifacts
effectively.
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